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Executive summary 

Maxent and Multi Modelling for selected glasshouse glasshouse biological 
control agents  

Logan DP, Senay SD, Narouei Khandan HA, March 2013, PFR SPTS No. 8061 

Three exotic biological control agents (BCAs) (Delphastus catalinae (Horn), Macrolophus 

melanotoma (Costa)/ M. pygmaeus (Rambur) and Nesidiocoris tenuis (Reuter)) are considered 

to have potential for control of pests in New Zealand glasshouse production and are the subject 

of an application to the Environmental Protection Agency (EPA). CLIMEX modelling indicated 

that D. catalinae may persist outside glasshouses only in the warmest localities while 

Macrolophus melanotoma / M. pygmaeus and N. tenuis had potential to persist outside 

glasshouses in Northland, Auckland and on the east coast of the North Island. Further 

modelling using other methods was suggested by EPA to clarify some of the uncertainty 

surrounding the CLIMEX projections. The objective of this study was to use correlative-type 

habitat distribution models to infer environmental requirements for the three BCAs based on 

geographical collection records and to generate maps of suitable habitat within New Zealand 

The models or algorithms were Maxent, Logistic regression, Classification and Regression 

Trees, Conditional trees, Naive Bayes, K-nearest neighbour, Support Vector Machines, and 

Artificial Neural Networks. All algorithms except Maxent were implemented using the Multi 

Model program developed by the Ecological Informatics group, Bio-Protection Research Centre, 

Lincoln University. Environmental data were gridded data with a spatial resolution of 30 

arcseconds (Ca. 309 m at the equator) available from WorldClim (www.worldclim.org/). The 

data consist of altitude (m.a.s.l.) and 19 biologically relevant variables derived from temperature 

and precipitation data (BIOCLIM variables). Models were trained on presence and absence 

points with New Zealand excluded. Since there were no data for absences, they were 

generated within a limited geographic range of the known distribution by a one-class support 

vector machine algorithm.   

Results of Maxent modelling are presented separately from those of the other seven algorithms. 

In the case of Maxent, the sensitivity score (proportion of true positives that were predicted 

correctly) for each model was used to weight the model‟s results for a combined Multi Model or 

consensus map. Sensitivity was chosen as we considered that characterizing potentially 

suitable habitat was more important than characterizing unsuitable areas. In other words, the 

Multi Model is conservative, as false positives are more acceptable than false negatives when 

considering the risk that any of the three BCAs may establish outside glasshouses 

A summary of the model projections for New Zealand areas is as follows:  

Delphastus catalinae 

 The Maxent model indicated that climate suitability is generally poor for D. catalinae in New 

Zealand (most values<0.5), with coastal areas particularly in Northland slightly more 

favourable than elsewhere.  

 The consensus Multi Model predicts that Northland is relatively well suited climatically for D. 

catalinae (scores >0.7). 
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 In summary, the Maxent model indicates low likelihood that preferred climate for D. catalinae 

exists in New Zealand, consistent with results from CLIMEX modelling. The CLIMEX model 

indicated that only small areas of Northland are suitable for D. catalinae. The consensus 

Multi Model indicates that Northland may be suitable for D. catalinae. Part of the difference 

may merely reflect the relatively small number of weather stations used by CLIMEX 

compared with the high resolution gridded data used by the Multi Model and Maxent.  

Macrolophus melanotoma / M. pygmaeus 

 The Maxent model indicated that climate suitability is poor for M. melanotoma / M. pygmaeus 

in New Zealand (values<0.5). 

 The consensus Multi Model indicated that only a small area of north of Kaitaia in Northland 

has suitable climate for M. melanotoma / M. pygmaeus. 

 In summary, the Maxent and consensus Multi Model indicate a low likelihood that suitable 

climate for Macrolophus melanotoma / M. pygmaeus exists in New Zealand. In contrast, the 

CLIMEX model indicated that Northland and the east coast of the North Island contain 

suitable habitat for M. melanotoma / M. pygmaeus. Other less suitable areas occur on the 

west coast of the North Island, the upper South Island and parts of Banks Peninsula.  

Nesidiocoris tenuis 

 The Maxent model indicated that suitability of climate for N. tenuis is poor for all New 

Zealand (values <0.5). 

 The consensus Multi Model indicated that large areas in the northern half of the South island 

and many areas of the North Island have relatively suitable climate conditions (scores >0.6) 

for N. tenuis. 

 In summary, the consensus Multi Model and the CLIMEX model indicated that some areas of 

New Zealand have relatively suitable climate for N. tenuis, although these areas differed. In 

the consensus Multi Model case, suitable climate (areas with scores between 0.5 and 0.6) 

was predicted to exist in many areas of the North Island and the coastal areas of the Buller, 

Nelson, Kaikoura, and Canterbury regions. In the CLIMEX model case, suitable climate was 

predicted to exist in Northland and some coastal areas of the North Island. In contrast, 

Maxent modelling indicates that there is likely to be no suitable climate in New Zealand for N. 

tenuis.  

There is disagreement between the projections of two of the three modelling approaches for D. 

catalinae and M. melanotoma / M. pygmaeus and among all three modelling approaches for N. 

tenuis.  

The Multi Model method and Maxent rely on the geographical locations from which a species 

was collected to identify the most important features to model its preferred environment. As the 

collection data for each of the three BCAs were limited (n = 14 locations for D. catalinae, n = 23 

for Macrolophus spp., and n = 30 for N. tenuis), the models may be inaccurate and caution is 

advised in interpreting the results. Correlative models work best when there are many collection 

data. Based on other studies, 50-100 points representative of the species range may 

significantly reduce the uncertainty associated with habitat distribution predictions. Resolution of 

the environmental data is also critical.  

Limited collection data can also influence the development of a CLIMEX model and the 

interpretation of its output. However in CLIMEX, the model developer can combine collection 
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data with physiological data from laboratory experiments and sometimes qualitative data on 

distribution and abundance to select the most important environmental features and set their 

critical values. In the case of the three BCAs where some physiological data exist, CLIMEX 

results may be more reliable than Multi Model and Maxent model results. Note that all models 

are subject to continuing research to refine their performance, for example through more 

rigorous validation and sensitivity analyses.  

For further information please contact: 

David Logan 

The New Zealand Institute for Plant & Food Research Ltd 

Plant & Food Research Te Puke 

412 No 1 Road 

RD 2 

Te Puke 3182 

NEW ZEALAND 

Tel: +64-7-928 9794 

Fax: +64-7-928 9801 

Email: david.logan@plantandfood.co.nz 
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1 Introduction  

Three exotic biological control agents (BCAs) (a coccinellid beetle Delphastus catalinae (Horn), 

and two mirid bugs Macrolophus melanotoma (Costa)/ M. pygmaeus (Rambur) and Nesidiocoris 

tenuis (Reuter)) are considered to have potential for control of pests in New Zealand 

glasshouse production and are the subject of an application to the Environmental Protection 

Agency (EPA). Macrolophus caliginosus (Wagner) was named in the request for climate-

matching as it is a glasshouse BCA in Europe. However, the taxon is a junior synonym of M. 

melanotoma. Furthermore there is uncertainty that M. melanotoma is the correct identity of the 

glasshouse BCA. Instead mtDNA analysis and some biological observation suggest that the 

correct taxon is M. pygmaeus (Logan 2012).   

Incidence of the three BCAs outside glasshouses may have adverse effects on native fauna, as 

they are generalist predators. In this report the suitability of the New Zealand environment for 

the survival and persistence of the three BCAs was estimated using habitat distribution models.  

This report follows CLIMEX modelling reported by Logan (2012), which indicated that coastal 

areas of the North Island are potentially suitable for persistence of M. melanotoma / M. 

pygmaeus and N. Tenuis, while only limited areas in Northland were suitable for D. catalinae.  

Further modelling using other methods was requested by EPA because of some uncertainty 

surrounding CLIMEX projections. The objective of this study was to produce projections of the 

distribution of suitable areas in New Zealand for the three species using modelling methods 

other than CLIMEX.  

2 Methods 

2.1 General description 

We used correlative-type habitat distribution models to infer environmental requirements for the 

three BCAs based on the known geographical collection records (Appendix 1, Tables A1-A3). 

There were 15 localities available for D. catalinae, 30 for N. tenuis and 23 for M. melanotoma / 

M. pygmaeus. The models or algorithms were Maxent (Phillips et al. 2006) and seven methods 

(Logistic regression, Classification and Regression Trees, Conditional trees, Naive Bayes, K-

nearest neighbour, Support Vector Machines, and Artificial Neural Networks) implemented 

using a Multi Modelling framework developed by the Ecological Informatics group, Bio-

Protection Research Centre, Lincoln University (Worner et al. 2010). Distribution data for each 

species were from the Global Biodiversity Information Facility (http://www.gbif.org/) and 

published literature as reported in Logan (2012). Environmental data were gridded data with a 

spatial resolution of 10 arcseconds (Ca. 309 m at the equator) available from WorldClim 

(www.worldclim.org/) (Hijmans et al. 2005). The data consist of altitude (m.a.s.l.) and 19 

biologically relevant variables derived from temperature and precipitation data (BIOCLIM 

variables, Table 1). 

 
  

http://www.gbif.org/
http://www.worldclim.org/)
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Table 1. BIOCLIM variables. 

Code Variable 

ALT Altitude (m.a.s.l.) 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

BIO3  Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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2.2 Maxent 

Maxent (Phillips et al. 2004; http://www.cs.princeton.edu/~schapire/maxent/) is a machine 

learning method that estimates a species‟ distribution by finding the distribution of maximum 

entropy, subject to some constraints based on existing knowledge. Entropy is a measure of 

dispersedness (Elith et al. 2011). Maxent starts with a uniform grid of probability values and 

then iteratively fits a model to maximise the probability of presences in relation to background 

data. It uses different types of features (climatic or other predictor variables) and a 

„regularization‟ (smoothing) parameter for each of these features. There is an option to generate 

subsamples of background data to act as pseudo-absences, rather than using all background 

data and this achieves a shorter runtime than otherwise without reducing predictive ability 

(Phillips & Dudik 2008).. The model is validated using an independent test data set (Roura-

Pascual et al. 2009). Cumulative values, as percentages, are used to show the predictions for 

each analysed cell (i.e. a probability value). The cell with a value of 100 is the most suitable, 

while cells close to 0 are the least suitable within the study area (Phillips et al. 2006). 

In this study geographic co-ordinates for collection localities for each of the three BCAs were 

prepared as .csv files. All bioclimatic layers were used in the format of ESRI ASCII grids. We 

used version 3.3.3k from the command line. The main default settings were applied except that 

replicate number was fixed at 20 (instead of one) and maximum iterations were fixed at 1000. 

Replicated run type was used as the cross-validation option. We used the prepared New 

Zealand projection layer and clamping to omit grid cells where variables exceed the range 

represented in the training data.  

Model performance was evaluated by the Area under the Curve (AUC) of the Receiver 

Operative Characteristic (ROC). AUC is calculated by plotting sensitivity against 1-specificity 

across the range of possible thresholds. Sensitivity is the proportion of true positives that were 

predicted correctly (i.e. TP/(TP+FN))(Table 2). Specificity is the proportion of true negatives that 

were predicted correctly (i.e. TN/(TN+FP). 

Table 2. Confusion matrix. 

 
  Predicted 
  

Positive Negative 

Actual 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Maxent can produce maps, bar charts of jack-knife results, response curves and tables of the 

relative contribution of the environmental variables to the final model as output. Here we have 

reported the ranked relative contribution tables and mapped the grid cell values in arcmap 10. 

Maxent calculates the contribution of each variable in the following way. To determine the first 

estimate, for each iteration of the training algorithm, the increase in regularised gain is added to 

the contribution of the corresponding variable, or subtracted from it if the change to the absolute 

value of lambda is negative. For the second estimate, for each environmental variable in turn, 

the values of that variable on training presence and background data are randomly permuted. 

The model is re-evaluated on the permuted data, and the resulting drop in training AUC (Area 

Under the ROC Curve) is shown in the table, normalised to percentage. Variable contributions 

http://www.cs.princeton.edu/~schapire/maxent/
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should be interpreted with caution when the predictor variables are correlated. Values shown 

are averages over replicate runs. 

2.3 Multi Model 

2.3.1 General method 

The Multi Model program models species presence/absence data using seven different species 

distribution models (Logistic Regression (LOG), Naıve Bayes (NB), Decision Trees (CART), k-

Nearest Neighbours (KNN), Support Vector Machines (SVM), and Artificial Neural Networks 

(ANN)) (Figure 1). All seven models were trained (or fitted) and tested using selected variables. 

In order to obtain the best set of parameters for some models such as KNN, SVM and ANN, 

initial parameterization was carried out followed by optimisation. 

 

Figure 1: Flow diagram with main steps to reach a consensus model projection using the Multi Model 
program developed by the Ecological Informatics group, Bio-Protection Research Centre, Lincoln University. 

2.3.2 Brief descriptions of algorithms  

Logistic regression (LOG) is a generalisation of linear regression and used primarily for binary 

variables. Advantages include no distributional assumptions on the predictor variables, ease of 

implementation and interpretation, and ability to handle interactions between predictors, non-

linear relationships and mixed continuous and discrete predictors.  

Naïve Bayes (NB) is probably the most common Bayesian network model used in machine 

learning. In this model, the class variable Y is the root and the predictors X are leaves. The 

model is based on Bayes rule and it is naïve because it assumes that the attributes (X1…Xn) are 

all conditionally independent one from another. Given the class (Y), a deterministic prediction 
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can be obtained by choosing the most likely class. It is easy to implement and can handle noisy 

data. 

Classification and Regression Trees (CART) and Conditional Trees (CTREE) are types of 

decision trees. CARTs are built by an iterative process of splitting the data into two parts such 

that the sum of squared deviations from the mean is minimised at each split. CARTs are 

capable of handling a wide range of response variables (Speybroeck 2012). Small-sized trees 

are easy to interpret but may not have much predictive power. Judicious pruning is needed to 

limit over-fitting. 

K-nearest neighbour (KNN) models assume that observations closest in the space of predictor 

variables will be close to each other in the space of the response variable. This method can be 

applied to both regression and classification problems. The advantages include simplicity and 

use of local information, resulting in highly adaptive behaviour.  

Support Vector Machine (SVM) is a machine learning algorithm (Boser et al. 1992) used for 

binary classification problems. It treats objects to be classified as points in multi-dimensional 

space and selects a hyperplane that has a maximum margin (Noble 2006). The points on the 

margin of the hyperplane are called “Support Vectors” (Mahadevan & Shah 2009). Kernel 

functions are used to add additional dimensions to data to optimise classification. The SVM 

algorithm allows for some control of misclassification (i.e. setting parameters to describe a soft 

margin) with no effect on the final result.  

Artificial Neural Networks (NNET) imitate the learning process of animal brains. A mesh of 

artificial neurons are organised in several linked layers, with the output of one layer used as the 

input of the next layer. Each layer filters information by amplifying or by reducing it. NNET has 

the ability to model complex non-linear relationships and detect interactions between predictor 

variables and so is suited to ecological systems (e.g. Watts & Worner 2008).  

2.3.3 Balancing the data 

One important step is to generate absence locations. Absences are virtually never recorded. 

Even if they are, it is difficult to be sure those absence locations are real, because in some 

cases there may have not been enough searching, or the area is suitable but not occupied 

because of historical accident or dispersal limitations (Phillips et al. 2009; Vaclavik & 

Meentemeyer 2009; Van der Wal et al. 2009). The problem becomes more complicated when 

one works with global data (in this case Worldclim data that consist of over 580,000 points) 

because there are a large number of absence locations that can cause class imbalance. Some 

researchers use a random selection of these absence locations to overcome the problem of 

class imbalance. The random selection of absence data, depending on the selected locations, 

can have a large effect on model output and consequently may result in inaccurate 

interpretation. To solve this problem, Multi Model uses one-class support vector machines 

(OCSVMs) to select appropriate absence points out of large datasets. This method has some 

benefits, such as model creation in a short computational time, accuracy, and ability to handle 

large datasets. There are few studies regarding application of OCSVMs in ecological studies 

(Guo et al. 2005; Zuo et al. 2008). Instead of selecting a single best-performing OCSVM model 

that can result in over-fitting the data in the model, a set (ensemble) of 100 models fitted to a 

different sample of the data, which had the lowest prediction errors, are created. The absence 

locations are those where the probability of their environmental suitability was 0 in all 100 

models. As there are still many possible absence locations after this analysis, these points are 



 

 

©The New Zealand Institute for Plant & Food Research Limited (2013)  Page 6 
This report is confidential to Plant & Food Research and Tomatoes New Zealand 
Habitat suitability predictions for selected glasshouse biological control agents using Maxent and Multi Modelling. SPTS No. 8061  

reduced by clustering absence locations that have similar environmental variables by k clusters, 

to balance the number of presence locations.  

2.3.4 Variable selection 

After selecting the balanced absence data, significant BIOCLIM variables were verified and 

selected using random forest (Breiman 2001) and stepwise regression analysis (Thompson 

1995). A random forest is a classification method that uses many (≥1000) decision trees 

generated by a random selection of variables or features. Removing insignificant variables 

results in the improvement of the model fit, validity and computation time. 

2.3.5 Model consensus 

The goal of ensembling species distribution models is to find some consensus distribution from 

different algorithms. A major criticism is that it is not possible to average results obtained from 

models that have completely different algorithms and assumptions. At the same time, some 

decisions are too important or critical to be based on a single model. All models have their 

advantages and disadvantages. A method that can maximise prediction power by combining 

results of multiple models is desirable. Model consensus uses some prior criteria to weight 

individual model outputs for each location or grid cell and combine them into a single score to 

produce a final map (Marmion et al. 2009; Araujo & Peterson 2012). In our case we chose to 

use the sensitivity score of the Multi Models to weight the results of each model for the final 

consensus map. A weighted sum of the seven multiple model sensitivity scores was used to 

generate a probability layer of habitat suitability for each of the three species. Sensitivity 

(proportion of true positives that were predicted correctly in the training data) was chosen, as 

we considered that characterizing potentially suitable habitat was more important than 

characterizing unsuitable areas. In other words, the model is conservative, as false positives are 

more acceptable than false negatives when considering the risk that any of the three BCAs may 

establish outside glasshouses. Higher sensitivity can also be a result of overtraining (an inability 

to generalise or predict new data) of the models. Overtraining or over-fitting was avoided by 

checking AUC, Kappa statistic, and model uncertainty scores before generating weighting 

matrices.  
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3 Results 

3.1 Delphastus catalinae 

3.1.1 Maxent 

The average test AUC for the replicate runs was 0.894±0.216 (±standard deviation). The 

variables BIO19 (Precipitation of Coldest Quarter), BIO03 (Isothermality), BIO18 (Precipitation 

of Warmest Quarter), altitude and BIO07 (Temperature Annual Range) were relatively influential 

(Table 3). The Maxent model for New Zealand has most habitat suitability scores of <0.5 with 

small areas with scores >0.6 (Figure 2).  

Table 3. Relative contribution of each predictor variable for the Maxent model of Delphastus catalinae 

Variable 
Percent 

contribution Permutation importance 

BIO19 25.6 26 

BIO03 13.7 22.9 

BIO18 12.2 6.3 

alt 11.5 19.2 

BIO07 10 1.5 

BIO09 5.6 0.7 

BIO06 5.5 3.4 

BIO05 2.7 2.9 

BIO15 2.7 4.9 

BIO04 2.5 1.2 

BIO14 2.3 7.2 

BIO17 2.1 2.7 

BIO11 1.5 0 

BIO16 1 0.9 

BIO08 0.7 0 

BIO02 0.3 0 

BIO13 0.1 0.1 

BIO01 0 0 

BIO10 0 0 

BIO12 0 0 

 

3.1.2 Multi Model consensus 

The variables Bio06 (Min Temperature of Coldest Month), BIO08 (Mean Temperature of Wettest 

Quarter) and BIO11 (Mean Temperature of Coldest Quarter) were selected as most influential 

by random forests and stepwise regression analysis. Decision trees (CTREE, CART) were the 

best-performed individual algorithms (Table 4). The consensus Multi Model predicted that much 

of the North Island has a habitat suitability in the range 0.6-0.8 (Figure 3). 
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Table 4. Multi Model performance results for Delphastus catalinae. 

Model/Classifier (abbreviation) Sensitivity Kappa Uncertainty AUC 

Logistic regression (LOG) 0.4467 0.3830 0.0667 0.76 

Naïve Bayes (NB) 0.5867 0.5333 0.0667 0.7911 

Classification and Regression Tree 
(CART) 0.96 0.9143 0.1 0.7156 

Conditional Tree (CTREE) 1.0 1.0 0.1 0.7333 

K nearest neighbour (KNN) 0.95 0.8667 0.1333 0.7400 

Support Vector Machine (SVM) 0.8433 0.6475 0.2667 0.8667 

Artificial Neural Nets (NNET) 0.6700 0.4762 0.1667 0.8089 
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 Figure 2. Maxent map of habitat suitability in New Zealand for Delphastus catalinae. 
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Figure 3. Consensus map of habitat suitability in New Zealand for Delphastus catalinae. The map is a consensus of seven different algorithms (Logistic Regression, Naıve Bayes, 
Classification and Regression Trees, Conditional Trees, K-Nearest Neighbours, Support Vector Machines, and Artificial Neural Networks) weighted by their sensitivity scores. White areas 
are where no predictions were made because of dissimilarities to training data. 
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3.2 Macrolophus melanotoma / M. pygmaeus 

3.2.1  Maxent 

The average test AUC for the replicate runs was 0.995±0.003 (±standard deviation). The 

variables BIO09 (Mean Temperature of Driest Quarter), BIO06 (Min Temperature of Coldest 

Month), and BIO08 (Mean Temperature of Wettest Quarter) were relatively influential (Table 5). 

All grid cells in New Zealand have habitat suitability scores less than 0.5 (Figure 4).  

 
Table 5. Relative contribution of each predictor variable for the Maxent model of Macrolophus melanotoma / 
M. Pygmaeus. 

Variable 
Percent 

contribution Permutation importance 

BIO09 26.9 47.7 

BIO06 25.7 2.8 

BIO08 14.5 0 

BIO02 8.3 0.1 

BIO14 6.2 1.4 

BIO15 5.5 2.8 

BIO04 5.3 28.2 

alt 2.1 0.8 

BIO01 1.4 12 

BIO07 1.4 0 

BIO03 1.3 3.9 

BIO18 1.1 0 

BIO13 0.1 0 

BIO05 0.1 0.1 

BIO10 0.1 0 

BIO12 0.1 0 

BIO17 0 0 

BIO11 0 0 

BIO16 0 0 

BIO19 0 0 

 

3.2.2 Multi Model consensus 

The variables BIO01 (Annual Mean Temperature), BIO09 (Mean Temperature of Driest Quarter) 

and BIO11 (Mean Temperature of Coldest Quarter) were selected as most influential by random 

forests and stepwise regression analysis. Artificial Neural Nets (NNET) and Naïve Bayes (NB) 

were the best-performed individual algorithms (Table 6). The consensus Multi Model predicted 

that small areas in Northland are highly suitable (>0.8) for M. melanotoma / M. pygmaeus 

(Figure 5). 
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Table 6. Multi Model performance results for Macrolophus melanotoma / M. pygmaeus 

Model/Classifier (abbreviation) Sensitivity Kappa Uncertainty AUC 

Logistic regression (LOG) 0.9333 0.7059 0.1250 0.9434 

Naïve Bayes (NB) 1.00 0.7487 0.0938 0.9609 

Classification and Regression Tree 
(CART) 0.8933 0.1575 0.3125 0.5215 

Conditional Tree (CTREE) 0.40 0.00 0.7188 0.1406 

K nearest neighbour (KNN) 0.95 0.6618 0.2188 0.9219 

Support Vector Machine (SVM) 0.8933 0.7433 0.2188 0.9219 

Artificial Neural Nets (NNET) 1.00 0.8059 0.1875 0.9492 

 

 

Figure 4. Maxent map of habitat suitability in New Zealand for Macrolophus melanotoma / M. pygmaeus. 
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Figure 5. Consensus map of habitat suitability in New Zealand for Macrolophus melanotoma / M. pygmaeus. The map is a consensus of seven different algorithms (Logistic Regression, 
Naıve Bayes, Classification and Regression Trees, Conditional Trees, K-Nearest Neighbours, Support Vector Machines, and Artificial Neural Networks) weighted by their sensitivity 
scores. 
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3.3 Nesidiocoris tenuis 

3.3.1 Maxent 

The average test AUC for the replicate runs was 0.928±0.049. The variables BIO09 (Mean 

Temperature of Driest Quarter), BIO02 (Mean Diurnal Range), BIO13 (Precipitation of the 

Wettest Month) and BIO18 (Precipitation of the Warmest Quarter) were relatively influential 

(Table 7). The Maxent model for N. tenuis predicted habitat suitability scores of less than 0.5 for 

New Zealand (Figure 6).  

Table 7. Relative contribution of each predictor variable for the Maxent model of Nesidiocoris tenuis. 

Variable 
Percent 

contribution Permutation importance 

BIO09 36.9 48.7 

BIO02 12.6 8.5 

BIO13 12.6 10 

BIO18 10.7 1.7 

alt 8.2 0.6 

BIO14 4.9 0.9 

BIO04 4.6 24.2 

BIO19 3.7 1.6 

BIO07 2.2 0.2 

BIO16 1.9 0 

BIO12 0.9 0.8 

BIO08 0.3 1.2 

BIO17 0.2 0 

BIO06 0.1 0.7 

BIO15 0.1 0.3 

BIO01 0 0.2 

BIO10 0 0.3 

BIO03 0 0.3 

BIO11 0 0 

BIO05 0 0 

 

3.3.2 Multi Model consensus 

The variables BIO04 (Temperature Seasonality), Bio06 (Min Temperature of Coldest Month), 

BIO07 (Temperature Annual Range) and BIO09 (Mean Temperature of Driest Quarter) were 

selected as most influential by random forests and stepwise regression analysis. Logistic 

regression (LOG) and Naïve Bayes (NB) were the best-performed individual algorithms (Table 

8).The Multi Model consensus predicted much of the North Island as climatically suitable, as 

well as areas in the northern half of the South Island (Figure 7). 
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Table 8. Multi Model performance results for Nesidiocoris tenuis. 

Model/Classifier (abbreviation) Sensitivity Kappa Uncertainty AUC 

Logistic regression (LOG) 0.8798 0.7368 0.1111 0.7572 

Naïve Bayes (NB) 0.8317 0.6357 0.0370 0.7599 

Classification and Regression Tree 
(CART) 0.7111 0.3534 0.0926 0.6324 

Conditional Tree (CTREE) 0.3778 0.1023 0.5185 0.6543 

K nearest neighbour (KNN) 0.8603 0.5374 0.1111 0.8615 

Support Vector Machine (SVM) 0.6781 0.5454 0.1852 0.8436 

Artificial Neural Nets (NNET) 0.5924 0.5136 0.2593 0.9218 
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Figure 6. Maxent map of habitat suitability in New Zealand for Nesidiocoris tenuis.
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Figure 7. Consensus map of habitat suitability in New Zealand for Nesidiocoris tenuis. The map is a consensus of seven different algorithms (Logistic Regression, Naıve Bayes, 
Classification and Regression Trees, Conditional Trees, K-Nearest Neighbours, Support Vector Machines, and Artificial Neural Networks) weighted by their sensitivity scores. 
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4 Interpretation of maps 

4.1 Delphastus catalinae 

 The Maxent model indicated that climate suitability is generally poor for D. catalinae in New 

Zealand (most values<0.5), with coastal areas particularly in Northland slightly more 

favourable than elsewhere.  

 The consensus Multi Model predicts that Northland is relatively well suited climatically for D. 

catalinae (scores >0.7). 

 In summary, the Maxent model indicates low likelihood that preferred climate for D. catalinae 

exists in New Zealand, consistent with CLIMEX modelling. The CLIMEX model indicated that 

only small areas of Northland are suitable for D. catalinae. The consensus Multi Model 

indicates that Northland may be suitable for D. catalinae. Part of the difference may merely 

reflect the relatively small number of weather stations used by CLIMEX compared with the 

high resolution gridded data used by the Multi Model and Maxent.  

4.2 Macrolophus melanotoma / M. pygmaeus 

 The Maxent model indicated that climate suitability is poor for M. melanotoma / M. pygmaeus 

in New Zealand (values<0.5). 

 The consensus Multi Model indicated that only a small area of north of Kaitaia in Northland 

has suitable climate for M. melanotoma / M. pygmaeus. 

 In summary, the Maxent and consensus Multi Model indicate low likelihood that preferred 

climate for Macrolophus melanotoma / M. pygmaeus exists in most or all of New Zealand. In 

contrast, the CLIMEX model indicated that Northland and the east coast of the North Island 

contains suitable habitat for M. melanotoma / M. pygmaeus. 

4.3 Nesidiocoris tenuis 

 The Maxent model indicated that suitability of climate for N. tenuis is poor for all New 

Zealand (values <0.5). 

 The consensus Multi Model indicated that large areas in the northern half of the South island 

and central areas of the North Island have relatively suitable climate conditions (scores >0.7) 

for N. tenuis. 

 In summary, the consensus Multi Model and the CLIMEX model indicated that some areas of 

New Zealand have relatively suitable climate for N. Tenuis, although these areas differed. In 

the consensus Multi Model case, suitable climate was predicted to exist in the central north 

island and the coastal areas of the Buller, Nelson, Kaikoura, and Canterbury regions. In the 

CLIMEX model case, suitable climate was predicted in Northland and some coastal areas of 

the North Island. Maxent modelling indicates that there is likely to be no suitable climate in 

New Zealand for N. tenuis.  
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4.4 Summary 

There is disagreement between the projections of two of the three modelling approaches for D. 

catalinae and M. melanotoma / M. pygmaeus and among all three modelling approaches for N. 

tenuis. Model performance for all three species and particularly for D. catalinae is likely to be 

compromised significantly by small training data sets (i.e. the limited geographical collection 

records available: n=14 for D. catalinae, n=23 for Macrolophus spp., n=30 for N. tenuis). Small 

training sets (n<30) are likely to be subject to various errors, including incidental correlation with 

environmental variables and poor representation of the species range (Stockwell & Peterson 

2002; Wisz et al. 2008). Caution is advised in interpreting results of the Maxent and Multi 

Models in particular. The limited collection data can also influence interpretation of CLIMEX 

output; however, these data are augmented by physiological data from laboratory experiments 

and by expert opinion and in this case CLIMEX results may be more reliable than Multi Model 

and Maxent model results. 
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Appendix Table A1. Longitude and latitude 
coordinates for collection localities of Delphastus 
catalinae (n=14) 

Longitude Latitude 

-82.4572 27.95058 

-61.7305 12.05337 

-61.4381 10.66076 

-80.1495 26.0112 

-80.4776 25.46872 

-82.5723 27.52143 

-82.3248 29.65163 

-75.5197 10.38733 

-75.5557 10.40119 

-115.625 33.12716 

-120.046 34.6853 

-76.26 -10.7098 

-118.451 33.38698 

-119.695 34.01592 
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Appendix Table A2. Longitude and latitude 
coordinates for collection localities of Macrolophus 
melanotoma/M. pygmaeus (n=23) 

Longitude Latitude 

21.92715 39.36564 

21.35617 37.79329 

23.31663 38.3405 

23.09904 38.375 

2.448347 41.53506 

2.205816 41.45544 

2.375238 41.51667 

-1.41278 38.22861 

-1.7 38.22472 

-1.985 38.275 

-16.61 28.39278 

-7.455 39.41972 

2.408611 41.55417 

-1.49692 37.49517 

-1.93381 38.05769 

-1.7835 38.10878 

-1.14042 37.84397 

-1.47722 37.60061 

-1.06019 37.95044 

-1.31872 38.14708 

-1.72747 38.17933 

-16.8078 28.36564 

-16.6102 28.39281 

-8.89806 37.19425 
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Appendix Table A3. Longitude and latitude 
coordinates for collection localities of Nesidiocoris 
tenuis (n=30) 

 

Longitude Latitude 

-1.58116 37.4038 

15.05702 37.49805 

14.70939 36.9203 

21.54504 37.75936 

22.64264 38.60111 

7.557056 44.32646 

8.197249 44.06017 

34.77053 32.04572 

34.76615 32.06342 

34.84408 32.16337 

35.20685 31.77008 

34.81127 31.89277 

34.92088 32.44278 

35.38357 31.45119 

152.3655 -32.5074 

120.4358 15.94412 

120.7689 15.65806 

120.55 16.11667 

125.0667 6.216671 

120.9876 15.69068 

78.83111 24.74083 

72.95083 22.55417 

85.82452 20.29606 

76.9971 20.70388 

90.4201 23.9984 

31.20214 30.07365 

15.96999 -4.38706 

-72.5205 9.967492 

-76.3866 3.398049 

-69.2401 9.648832 
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Appendix Figure A1. Habitat suitability for 
Delphastus catalinae based on a CLIMEX model 
(Logan 2012) 
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Appendix Figure A2. Habitat suitability for 
Macrolophus melanotoma /M. pygmaeus based on a 
CLIMEX model (Logan 2012) 

 
  



 

 

©The New Zealand Institute for Plant & Food Research Limited (2013)  Page 27 
This report is confidential to Plant & Food Research and Tomatoes New Zealand 
Habitat suitability predictions for selected glasshouse biological control agents using Maxent and Multi Modelling. SPTS No. 8061  

Appendix Figure A3. Habitat suitability for 
Nesidiocoris tenuis based on a CLIMEX model 
(Logan 2012) 

 

 


