

The New Zealand Institute for Plant & Food Research Limited

Fresher by Sea: The secret postharvest life of tomatoes

TomatoesNZ (incl T&G Covered Crops, NZ Hothouse), Vegetables New Zealand Ltd, & PFR

4 days (assembly) + 11 days (sea) + 2-3 days (arrival) + ? (retail/consumer)

Fresher by Sea

- To support the development of sea-freight protocols for capsicums and tomatoes bound for Asia/Pacific markets, by:
 - summarizing the biological, technical and logistical requirements of tomatoes and capsicums sea-freighted to potential markets in Asia/Pacific region - *including the most recent relevant research and experiences of grower exporters*
 - Identifying knowledge gaps and areas of concern/risk and testing these in meaningful practical trials
 - development of suitable postharvest systems and practical guidelines
 - communication of progress and results

Biology of ripening affects postharvest quality

- Normal ripening events
- Biological features influencing storage quality
- Postharvest technologies to extend storage quality

By Taken bylir0002 | flagstaffotos.com.auCanon 20D + Sigma 150mm f/2.8 - Own work, GFDL 1.2, https://commons.wikimedia.org/w/index.php?curid=2038647

Biological factors that influence postharvest storage

- Its in the DNA (or, maybe its what ISN'T in the DNA)
- Low temperature intolerance ^(C)

Colourless, odourless, tasteless.....

Controlling ethylene synthesis

Controlling the effect of ethylene

Ripening-related genes, e.g, Polygalacturonase Phytoene synthase

The New Zealand Institute for Plant & Food Research Limited

Solanum pimpinellifolium

'Original' tomato

- Domestication has resulted in a range of fruit sizes, locule number, disease resistance, shape, colour...
- These have arisen through natural breeding

Gene mutations

- Often arises naturally, through uncorrected errors during crossing, but can also arise on purpose through mutation breeding.
- Most mutations don't result in a phenotype.
- A mutation may not create a phenotype until it becomes homozygous through selfing.
- Consequences depend on what protein is affected; enzyme or transcription factor.
- Originally identified visually through effect on plant/fruit or through screening.
- Better information once mutation is linked to specific gene & function.

Why don't these tomatoes taste any good?

- Its all '*u*'s fault.... well some of it is
- *u*: uniform ripening locus mutation affects a gene involved in chloroplast number and function

http://thegreatestgarden.com/wp-content/uploads/diagram-of-a-plant-cell-for-5th-grade.jpeg

Why don't these tomatoes taste any good...

- Its all '*u*'s fault.... well some of it is
- *u*: affects a gene involved in chloroplast number and function
- mutation results in uniform but paler colour, and less sugar accumulation.

Pretty or Sweet

The grocery-store tomato that looks beautiful but tastes like tart cardboard arises from selection processes favoring phenotypes that make commercial production more reliable. Significant in that selection process was a mutation that reduced the mottled color variations of unripe green tomatoes, leaving them a uniform, pale, green. **Powell et al.** (p. 1711) analyzed the molecular biology of the mutation. The *uniform ripening* mutation turns out to disable a transcription factor called *Golden 2-like* (*GLK2*). *GLK2* expression increases the fruit's photosynthetic capacity, resulting in higher sugar content.

Ann L. T. Powell et al. Science 2012;336:1711-1715

Name	Phenotype	Gene
Ripening inhibitor (rin)	Fruit do not ripen fully. They yellow and soften very slowly. No climacteric rise in respiration or ethylene. Fruit lack flavour and pro-vitamin A and have long storability.	MADS box transcription factor ¹
Nonripening (nor)	Final fruit colour is pale orange. Does not ripen fully (similar to <i>rin</i>).	2 bp deletion in NAC ⁹
Never-ripe Nr)	Ripe fruit are orange. Synthesis of lycopene and polygalacturonase reduced. Fruit store a long time.	Single amino acid change in Ethylene receptor ^{10,11}
Colourless nonripening (Cnr)	Yellow fruit with a substantial loss in cell-to-cell adhesion resulting in mealy pericarp. Ripening-related carotenoid synthesis absent.	SBP-box transcription factor ⁶
Delayed fruit deterioration (dfd)	Very thick skin and reduced water loss	Unknown
High pigment1 (hp-1)	Dark green immature fruits due to overproduction of chlorophyll	DDB1 (UV-damaged binding protein 1)
High pigment2 (hp-2)	Identical to hp-1	Deetiolated1 (DET1) ortholog, nuclear localized protein ²
Green-ripe (Gr)	Reduced ethylene response.	Deletion in promoter causing ectopic expression of ethylene receptor protein interactor? ⁴
Never-ripe2 (Nr-2)	Allelic to <i>Gr</i>	Ethylene receptor protein interactor ⁴
Green flesh (gf)	Ripe fruit are red-brown because chlorophyll not totally degraded. Fruit otherwise ripen normally.	Staygreen (SGR) ortholog ³
Yellow flesh (r)	Ripe fruit are yellow because lycopene is not produced. Fruit otherwise ripen normally.	Phytoene synthase ⁷
Uniform ripening (u)	Pale green fruit, dark green shoulder of fruit not present	Golden 2-like transcription factor ⁵
Alcobaca (alc)	In planta ripened fruit are pale red. Flavour almost normal but longer shelf life attributed to reduced polygalacturonase activity. Lycopene synthesis inhibited. Fruit picked mature green only ripen to yellow colour.	Valine to aspartic acid amino acid change at position 106 of NOR ⁸
Long keeper	Fruit ripen to a golden orange red colour. Polygalacturonase activity, softening and carotenoid content is reduced and fruit store well	

Natural mutants with impaired ripening are the workhorses of commercial tomatoes

rin: gene controls ethylene dependent and independent aspects of ripening. Mutation results in fruit that do not ripen. Heterozygous in commercial lines, so have extended shelf-life but do ripen somewhat.

nor/alcobaca: same transcription factor gene mutated but different outcomes – non-ripening to delayed ripening. Affects the coordination of events downstream of ripening climacteric – fruit seem to act like they are non-climacteric (so ripen well on-plant).

Specialty lines are the same but different....

- Grape and cherry lines carry the *rin* mutation
- May carry the *nor* mutation as well
- Better picked at ripe to take advantage of the greater accumulation of sugar
- Brix levels are critical for customer
- Ethylene management not so critical

Tomatoes are susceptible to chilling injury

- Due to damage to cell membranes.
- Can't reverse chilling damage can accumulate with increased exposure.
- Damage not always obvious during storage but revealed as stored fruit warm up.
- Maturity dependent unripe fruit more susceptible.
- Cultivar variation (but probably not on purpose!).
- Temperature can't be the sole means of slowing metabolism during storage.

http://thegreatestgarden.com/wp-content/uploads/diagram-of-a-plant-cell-for-5th-grade.jpeg

Low temperature intolerance

Tomatoes are susceptible to chilling injury

- Due to damage to cell membranes.
- Can't reverse chilling damage can accumulate with increased exposure.
- Damage not always obvious during storage but revealed as stored fruit warm up.
- Maturity dependent unripe fruit more susceptible.
- Cultivar variation (but probably not on purpose!).
- Temperature can't be the sole means of slowing metabolism during storage.

Postharvest technologies to extend storage

- Manage ethylene, manage ripening....(but not for all tomatoes)
- Temperature (need to find the best one for the job)

- Heat shock
- UV-C

- Controlled atmosphere?
- Methyl salicylate, methyl jasmonate?

http://www.profitableplantsdigest.com/wp-content/uploads/2013/12/HeirloomTomato_opt-.jpg

Specialty line storage: maintaining quality AND delivering Brix

Photo.elsoar.com

🍳 Photo.elsoar.com

Grape-type specialty tomatoes

- Pick ripe.
- °Brix declines during storage.
- Can last 3 weeks with extra days of shelf life.
- More robust than standard tomatoes but not bullet-proof.

Ripe, 6°C 3 weeks

Day 4

Ripe, 10°C 3 weeks

Day 4

Ripe fruit stored 3 weeks at 10C, + 4 days of shelf life

Ripe fruit stored 3 weeks at 6C, + 4 days of shelf life

Postharvest treatments: Heat shock, UV-C

- Heat shock
 - brief exposure to temperatures in the range 40-52°C.
 - reported to reduce postharvest decay, induce pathogen resistance responses, induce synthesis of new proteins that protect membranes against chilling injury, prevent loss of flavour
- UV-C
 - reported to reduce incidence of postharvest rots, delay ripening and reduce chilling injury symptoms
 - application difficult whole surface must be exposed
- Both treatments shown to be somewhat effective in a research context
- Time/temperature/cultivar: important to optimize; uniformity of heating important; integration into current handling systems???

Grape-type specialty tomatoes were treated....

- 1. Control (as-is)
- 2. Control (water washed)
- 3. 1x UV (in water)
- 4. 2x UV (in water)
- 5. Heat treatment 50°C for 2 min
- 6. Heat treatment 52.5°C for 2 min
- 7. Combination of heat (50°C for 2 min) plus 1x UV

... then stored for 4 weeks at 10°C...

... then evaluated at 20°C for 7 days

% Saleable fruit

% Flawless fruit

Things to consider

- Investigate impact of heat shock on specialty lines?
- Get more certainty with temp/time for cherry tomatoes.
- Ethylene management benefits of new films?
- Scale up of storage tests for specialty lines to full boxes/container trials ⁽³⁾
- Investigate controlled atmosphere for extended storage of large loose tomatoes?
- Need to know extent of benefit v cost of implementation.

The New Zealand Institute for Plant & Food Research Limited

Thanks to PFR colleagues

Sheryl Somerfield, Ross Lill, Allan Woolf, Shane Olsson, Agam Nangul, Simon Redpath

David Brummell, Donald Hunter, Marian McKenzie

Duncan Hedderley

www.plantandfood.co.nz

The New Zealand Institute for Plant & Food Research Limited

Thanks to 'Fresher by Sea' grower-exporters!

T&G Covered Crops – Ben Smith, Murray Adam, Anthony Stone, Satwant Grewal et al.

NZ Hothouse - Simon Watson, Lex Dillon, Bevan Thorby et al.

www.plantandfood.co.nz